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The Earth's gravitational potential is now usually expressed in tem of a
double series of tesseral harmonics with several hundred terms, up to order and
degree at least 20. The harmonics of order 14 can be evaluated by analysing
changes in satellite orbits which experience l4th-order resonance, when the
track over the Earth repeats after 14 revolutions.

In this Report we describe our first evaluation of individual l4th-order
coefficients in the geopotential from analysis of the variations in inclination
and eccentricicy of satellite orbits passing through l4th-order resonance under
the action of air drag. Using results from eleven satellites, we find the
following values for normalized coefficients of harmonics of order 14 and

degree £., cz’“’ and sz 14 ° for & =14, 15 ,...22:

2 109C 1095

S0 2,14 2,14
|4 -38.5 + 2.9 -708 + 2.2
15 4,5 £ 1.1 -23.8 + 0.3
16 -22,3 + 3.6 -36.0 + 3.8
17 -15.0 £ 2.6 16.8 £ 1.2
18 -24.,0 t 4.9 -3,2 + 3,7
19 -1.6 £ 2.8 -7.6 £ 1,0
20 8.8 £ 5.8 =15.4 £ 4.6
22 -14.5 t 8.1 9.9 t 6.6

These values provide a test of the accuracy of the l4th-order coefficients
in comprehensive geoid models. Detailed comparisons with three recent models are
made, showing good agreement on some coefficients and discrepancies on others.
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1 INTRODUCTION

One of the finest achievements in the Earth sciences in the past few years
has been the accurate determination of the shape of the geoid, obtained by
assuming that the geopotential can be expanded in a double series of tesseral
harmonics, then analysing hundreds of thousands of satellite observations and
solving the equations to obtain values for hundreds of the harmonic coefficients.
Examples of such comprehensive geoid models already published include the
Goddard Earth Model 8 (GEM 8)', the Smithsonian Standard Earth IV.3 (SSE IV.3)2
and the European GRIM 2 mode13. The accuracy of the solutions has been improving
rapidly as more laser ranging data are included: the most recent Goddard Earth
Hodela, GEM 10, includes 598 geopotential coefficients and is complete to degree
and order 21; GEM 10 utilizes 840000 observations including 200000 laser ranges
(many on Geos 3 and Lageos), and gives a geoid which may be accurate to about

] metre over most of the world.

Though the overall geoid is well determined in these comprehensive solu-
tions, most of the values of individual geopotential coefficients of degree
higher than about 1Z are poorly determined: in GEM 7, Wagners estimated that
the errors exceed 302 for degrees higher than 12, The values of coefficients of
a particular order can, however, be accurately determined by analysing the orbits
of satellites which experience resonance of that order, as their orbits slowly
contract under the influence of air drag. For example, 15th-order resonance
occurs when the Earth spins once relative to the orbital plane while the satellite
completes 15 revolutions. The satellite then crosses the equator at intervals of
24° in longitude, and its track over the Earth repeats after 15 revolutions. The
ISth-order harmonics in the geopotential have maxima every 24° in longitude, and
therefore have the same effect on the satellite on every revolution. Consequently
the perturbations which they produce tend to build up, and if near-resonance
continues for several months, the resulting changes in the orbital parameters
(particularly the orbital inclination) are large enough to be analysed, and to
give an accurate value for a 'lumped harmonic' appropriate for that orbit - the
lumped harmonic being a linear function of the individual harmonics of order 15
and degree 15, 17, 19 .... (if the inclination is being analysed). By obtaining
such values from orbits at differing inclinations, the values of the individual
coefficients can be determined. The 15th-order resonance is particularly fruit-
ful, because it occurs when the average height of a satellite over the Earth is
about 500 km, and numerous satellites are 'dragged through' 15th-order resonance.
Three years ago we analysed the changes at 15th-order resonance for 13 satellites,
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6,7

obtaining values for coefficients of order 15 and degree 15, 17, 19 ....33
(from variations in inclination) and coefficients of degree 16, 18, 20 and 22
(from variations in eccentricity). These sets of values for 15th-order harmonic
coefficients were better than the conflicting sets in the comprehensive geoid

models existing at that time, and have subsequently been incorporated in GRIM 2.

The success of this analysis, which also yielded tentative values for

30th-order harmonics, encouraged the idea of studying other resonances. We

looked at the feasibility of utilizing ‘half resonances', such as 29:2 (when the

satellite makes 29 revolutions while the Earth spins twice), and in 1976 Halker8
T succeeded in analysing 29:2 resonance for Ariel 1, and obtained values for lumped
29th-order harmonics; while Hiller and King-ﬂele9 analysed 31:2 resonance for

Proton 4, though with less accurate results, because of the high drag.

The other obvious resonances to study are l4th and 16th order. The latter
is difficult because 16th-order resonance occurs when the average height of the
satellite is near 200 km, when the drag is usually severe, and the resonance does
not last long enough to build up a measurable perturbation. For l4th-order
resonance the average height is 800 km, and the problem is lack of drag: the
satellites linger on the brink of resonance for many years before experiencing

the effects fully. After waiting for two years, we now have four satellites which

give good results at l4th-order resonance and, by combining these with three
analysed by Hagners and results from four high-drag satellites, we have evaluated
l4th-order coefficients of degree 14, 15, 16 ....22, with tentative values for

higher degrees.

2 THEORETICAL EQUATIONS FOR ORBITAL CHANGES NEAR 14TH-ORDER RESONANCE

If we accept that a double infinite series of tesseral harmonics is the best
representation of t?e geopotential,IO its longitude-dependent part can be written
in normalized form at an exterior point (r,6,)A) as

® A .
% Z Z (1:-)| P': (cos 8) {Ezm cos mA + §zm sin IllA}sz ‘ (1)

L=2 m=1

where r is the distance from the Earth's centre, 6 is co-latitude, X ‘is
longitude (positive to the east), u is the gravitational constant for the
Barth (398601 km>/s2), R is the Barth's equatorial radius (6378.1 km),

P: (cos 6) is the associated Legendre function of order m and degree & ,

and clm and §‘- are the normalized tesseral harmonic coefficients, of which
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those of order m = 14 particularly concern us here. The normalizing factor

Nz‘ is given by
2 _ 2+ 1D -m!
N e . (2)
The rate of change of inclination i caused by a relevant pair of
coefficients, Ezm and §‘m , Near PB:a resonance may be writtenI2
ai n R e [:z-m +1 e : 5 ]
-y T ( 7 ulp zpq(k cos i - m)K c Jsm) exph(y@ quw) } -
LR NN ) (3)

where izup is Allan's normalized inclination functionl3, Gzpq is a function

of eccentricity e for which explicit forms have been derived by Goodinglz, (1
denotes 'real part of' and j = Y=1 . The resonance angle ¢ is defined by

the equation

¢ = a(w+M +B(R~-Vv) , (4)

where w is the argument of perigee, M the mean anomaly, 2 the right
ascension of the node and v the sidereal angle. The indices Yy, q, k and p
in equation (3) are integers, with y taking the values 1, 2, 3 ,,.. and q
the values 0, *1, *2, ,,..; the equations linking £, m, k and p arelz:
m=vY8; k=ya-q; 2p=2-k.

Here B =14 and o = 1 , and the msuffix of a relevant (Ezm’gzm) pair
is given uniquely by the choice of y . The values of £ to be taken must be
such that £ 2 m and (% - k) is even. The successive coefficients which arise
(for given y and q ) may usefully be gathered together in a lumped form and

-q!k q’k- -q’k q’k-
Ca = Zqz Tt g R Zqz Sem * &)
L

L

. 12
written as

where 2 increases in steps of 2 from 1ts minimum permissible value Lo , and
the Q are constant coefficients w1th Q =],

For the 14:1 resonance the most important terms in equation. (3) are likely
to be those with y =1 , because Yy = 2 gives m= y8 = 28 , and the 28th-order
harmonics are expected to have a much smaller effect. Of the terms with y =1 ,
those with q =0, 1 and -1 are likely to be the most important, since
terms with q = #2 have an extra e factor, and e < 0,08 for the satellites

analysed here. So, for the present, we concentrate on the terms with »% ﬁ”\
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(Y,q) = (1,0), (1,1) and (1,-1). With y =1 , we have m= 14 and k=1 -gq,
so that the three pairs of values of (y,q) above are associated with the follow-
ing three pairs of values of [q,kl: [0,1], [1,0] and [-1,2]. With these

assumptions, equation (3) may be rewritten for l4th-order resonance “12-14

14 1 =0,I

di n__ (RY |R & = =0,1 | ’
-0 [a (14 = cos DF 5 |, A5,0 sin ¢ + T cos 0}

-1,0

I5e
14.14,7{"14

-1,0
o gt (14)F sin(® - w) - S cos(p - m)}

14

52 -1,2
sin (¢ +w) - SM cos (¢ +u#

lle HE =]
e = (14 - 2 cos 1)F14,16,6{CM

+ terms in elql COS (yo - qw)] . (6)
sin
: Loy =9,k =Dk HET
The three pairs of lumped coefficients cm and sm appearing in
equation (6) may be written in terms of the individual geopotential coefficients
(cm,s ) as indicated in equations (5). Explicitly, with the Qq’ expressed

in terms of the F functions, we havelz-“'

=0,1 = F17.14,8 19,14,9 nj‘-
o ® Y ( 17,14 P’_'_"(a Efgis™ e

15, Ilo7 15,14,7

19F

ght - oo U plaléd (R f 1Fi8,14,9 5-)46 . i
14 R e R S 151!,,. 14,7 18,14

-1,2 13F f 15F 5.

g " 16,14,7 [R¥ = 18,14,8 (RY = =

14 Crapia ~ TiF,,, M'ﬁ(a = |'TM"—‘M"'6 ol Sigak T e

and similarly for S , on replacing C by S throughout.

The rate of change of eccentricity e caused by the (£,m) harmonic near

B:a resonance can be vrittenlz

2
%% . n(%’.rmpclpq{g “% *ae }a[jz.mﬂ(czm 5 jslm) exp j (o - qw)] 3

ceses (10)
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The most important terms in (10) are likely to be those with (y,q) = (1,1) and
(1, =1), but for consistency with equation (6) we also give explicitly the terms
with (y,q) = (1,0) . Equation (10) may then be written for l4th-order resonance
as

2 (]

14 0,1 0,1
d = 2 E 5 ¥ i 4 s )
- (a) [e(a) F15,|4,7(514 6in & ¥ By F08 ¢

-1,0

- 1,0

- 15F14,14,7{C14 sin(¢® - w) - 814 cos (¢ - w)}
. inled e _-1,2

+ IIF14,14,6{C14 sin(® + w) - Sla cos (¢ + m)}

+ terms in [;Iql-l{q - ik + q)ez} :g:(70 - quiﬂ (11)

-q,k -q,k - p
where the Cla and 514 are given by equations (7) to (9).

3 METHOD

For a number of years we have been receiving US Navy orbital data on
selected low-drag satellites in near-circular orbits close to l4th-order resonance.
With the data now accumulated on two of these satellites, 1965-16G and 1971-120B,
accurate fitting of the l4th-order theoretical equations is possible. Useful
results are also derived from the US Navy data on 1965-81A, a satellite of higher
eccentricity, which passed through resonance in 1970, We first fit the inclina-
tion and eccentricity data separately, using the computer program THROE'S, and
then make a combined fitting of inclination and eccentricity, using the SIMRES
programlz. Our fourth satellite is Ariel 2 (1964-15A), for which Gooding has
analysed the variations in inclination and eccentricity after l4th-order

1
resonance

In determining the coefficients of 14th order and odd degree (degree 15,
17, 19 ...), we have utilized data from six other satellites. Of these, the
most important are three low-drag satellites accurately analysed by Hagnetsz
1963-26A; 1961-15G; and 1971-120A before resonance. The other three are high-
drag satellites, two analysed by Klokoénikl6 and one by Hillerl7, for which the

results are inevitably of poorer accuracy, but still useful in filling gaps in
the range of inclinations.

In determining coefficients of 14th order and even degree (degree 14, 16,
18 .¢..), the four primary satellites provide the main data base; but recultol8
from the high-drag satellite 1971-106A are also included, and some subsidiary

results from Wagner's fittings of 1963-26A and 1961-15G are used.




4 THE INDIVIDUAL SATELLITES

4,1 The four primary orbits

4.1.1 Surcal 2, 1965-16G

Surcal 2 was one of eight small satellites launched on 9 March 1965 into
near—-circular orbits having inclinations near 70° and heights near 920 km, Of
the eight satellites, 1965-16G has decayed most rapidly: its period decreased
from 103.5 minutes initially to 101.8 minutes in July 1977, and it passed

through l4th-order resonance on 13 November 1976.

Values of inclination from US Navy orbits from January 1976 to July 1977
are plotted in Fig 1, after removal of (1) lunisolar and zonal harmonic perturba-
tions, using the computer program PR.OD19 with l1-day integration steps; and (2)
the effects of atmospheric rotation and the precession of the pole, using THROE.
The unbroken line in Fig | shows the theoretical curve fitted by THROE with
(v,q9) = (1,0), while the broken line shows the fitting of inclination and
eccentricity together using SIMRES, with (y,q) = (1,0), (1,1) and (1,-1). The
close agreement of the two curves is extremely satisfactory; the rms scatter of
the points about the curve, O.DO)ZO, is slightly smaller than the expected
accuracy of the US Navy orbits. The values of the lumped coefficients for
(v,q) = (1,0) from the THROE run are virtually the same as from SIMRES. Each
THROE run includes a calculation of the measure of fit & (where ez is the
sum of squares of weighted residuals, divided by the number of degrees of freedom).
In the SIMRES fitting, i and e were weighted on the basis of the values of
¢ obtained in the contributing THROE runs. In Fig | the value of ¢ increases
from -2.9 deg/day at the start to +2.8 deg/day at the end.

The values of eccentricity from US Navy orbits are plotted in Fig 2 after
removal of zonal harmonic perturbations. The unbroken line shows the curve fitted
by THROE with (y,q) = (1,1) and (1,-1), the broken line shows the fitting of i
and e together by SIMRES, with (y,q) = (1,0), (1,1) and (I,-1), and the dotted
line shows the THROE solution with (y,q) = (1,0) (1,%1) and (2,t1). The agree-
ment between the first two curves is good, but the points exhibit a curious
unfitted oscillation with an amplitude of order 0.0002 and a period of about
75 days. This cannot be due to lunisolar perturbations, which have been calcu-
lated and amount to only 0.00001; and there is very little improvement in the
fitting on taking into account the terms (y,q) = (1,t2) or (0,3)., But the
addition of the :(v,q) = (2,t1) terms does give a better fit: the measure of fit

¢ decreases from ).10 to 0.94., In the SIMRES solution the rms scatter of the
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points about the curve is 0.00012, which is rather greater than the expected
accuracy of the US Navy values.

Because of these deficiencies in fitting, we looked with some suspicion on
the values of the lumped coefficients obtained from SIMRES for the (y,q) = (1,%1)
terms. This suspicion proved well founded: in the solutions for individual
coefficients of even degree, the lumped harmonics did not conform at all well
with those obtained from the other satellites, even when three of the four stan-
dard deviations were increased by a factor of 3. We therefore looked again at
the THROE runs for e and found that the run with (y,q) = (1,0), (1,*1) and
(2,%1) gave values in better conformity with the other satellites. The values of
lumped coefficients for q = #+1 from this run were substituted in the equations
(without any modifications in sd) and gave better solutions for the individual
coefficients: although only two out of 14 equations were altered, the standard
deviations of the solutions were reduced by 15% on average. Our aim is to
obtain the best values of the individual coefficients, so this ex post facto
alteration was welcome, This fitting is presumably better because the q = +2
(m = 28) terms are important for this satellite, and should not be allowed to

contaminate the q = *1 (m = 14) coefficients which we are trying to evaluate.

Tables | to 3 record the values of the lumped harmonics as used in the
solutions for individual coefficients, for 1965-16G and all the other satellites.
The values for 1965-16G in Table 1 are from the SIMRES fitting, the vaiues in
Tables 2 and 3 from the THROE fitting of e , as already mentioned. These Tables
also give the corresponding values of the QZ’k coefficients defined in

equation (5), and similar data for all the other satellites used.

4.1.2 1971-120B (Meteor 10 rocket?)

The Meteor 10 satellite and its rocket were launched on 29 December 1971
into a near-circular orbit at a height near 860 km, at an inclination of 81.25°,
In April 1976 three fragments appeared in orbit, and the object 1971-120B, which
had previously been approaching l4th-order resonance, reappeared in an orbit which
had just passed resonance. Some difference of opinion exists about the identity

of 1971-120B, but this is irrelevant in our analysis.

Fig 3 shows the weekly US Navy values of inclination between April 1976
and August 1977, after removal of the usual perturbations (lunisolar, odd harmonic,
etc)., The unbroken line indicates the theoretical curve for (y,q) = (1,0)
fitted by THROE. The rms scatter of the points about the curve is 0.,0021, The
SIMRES fitting of i and e together, with equal weighting on the basis of the
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THROE runs, is shown as a broken line in the few regions where it differs per-
ceptibly from the unbroken line. The value of ® increases from 0.34 deg/day
initially to 0.58 deg/day at the end. The fitting of inclination, and the
agreement between the two curves, is excellent. The values for the lumped

coefficients obtained from SIMRES for the (y,q) = (1,0) terms are

_0,1

N
S

= =~3,7 % 1.4 and 10 814 u =191 A2,

lO9

Wagner5 obtained values of these lumped harmonics for 1971-120A before resonance.
His values are 1.4 + 1,2 and -20.0 * 1.2 . The agreement is excellent, con-
sidering that different 'wings' of the resonance are being analysed, and that
neither analysis covers the exaft resonance. (In the final solution the sd was

doubled on both values of 01; , to avoid their clashing with each other.)

The values of eccentricity for 1971-120B, after removal of odd zonal harmonic
perturbations, are plotted in Fig 4, and the unbroken line shows the theoretical
curve for (y,q) = (1,1) and (1,-1) as fitted by THROE. The SIMRES fitting of i
and e together gives an almost identical result, Fig 4 shows that the fitting
is extraordinarily good, the rms scatter of the points about the curve being

0.000035, which is smaller than the likely errors in the values.

4.1,3 0GO 2, 1965-81A

Launched on 14 October 1965, OGO 2 entered an eccentric orbit with perigee
height 420 km and apogee 1520 km, at an inclination of 87.4°, Because of its
low perigee, 1965-81A suffered much greater drag than the two satellites previously
discussed: the period, initially 104.4 minutes, steadily decreased under the
influence of air drag, and the orbit passed through l4th-order resonance on
17 June 1970.

In equation (6) for di/dt , the first term in curly brackets (for q = 0)
is usually dominant. But 1965-81A happens to be near the inclination (86.20)

where is zero; also the eccentricity is quite large, 0.064, and con-

F
15,14,7
sequently the q = ]| terms are larger. Numerically, we find

{% (14 - cos i)§15’|4’7%/{l%£ (14)f14.la'7} = 0.2 .

;
i
i
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-1,0 -1,0 3 ;
Cla and 814 are about five times

larger numerically than 512 and slé .« So we might expect that the

Also it happens that at this inclination

=Us
(Y,q) = (1,0) terms in (6) would be negligible. This expectation is fulfilled.
Fitting i with (y,q) = (1,0) alone gives poor results; a much better fitting
is obtained witk (1,1) and (1,-1); and the use of all three pairs gives no

advantage.

So for 1965-81A, both the inclination and eccentricity are best fitted by
using the terms (y,q) = (1,1) and (1,-1) only. Both orbital parameters therefore
provide values of the same lumped coefficients, and this satellite provides a
severe test of their compatibility. Table 4 gives values of these four lumped
coefficients obtained from the fitting of i alone by THROE, e alone by THROE
and i and e by SIMRES. The agreement is as good as can be expected from a
fitting of four coefficients to only 26 data points.

Figs 5and 6 show the observational values and the fitted curves. The
fittings of i ir Fig 5 are quite satisfactory, but Fig 6 gives the impression
that the fitting of e alone is rather too oscillatory, and that the SIMRES
fitting is not oscillatory enough. This is in conformity with Table 4, where all
the values from the SIMRES solution are numerically smaller than those obtained
from fitting e alone. All-in-all, the fittings and the lumped coefficients are
good, considering the small number of observational values., In Figs 5 and 6 the
values of ¢ run from -12.4 deg/day at the beginning to +3.9 deg/day at the end.
The rms scatter of the values about the unbroken curves in Figs 5 and 6 is 0.0012°
for i and 0.00007 for e ; for the broken curves the corresponding values are
0.0013° and 0.00012.

For 1965~81A the possibility arises that the terms with (y,q) = (1,%2) may
be important. Their inclusion was fruitless with i , but did improve the fitting
for e ; however, too many constants (nine in all) were being determined from
too few points (26), so it was no surprise to find that nearly all the lumped
coefficients were undetermined and apparently much too large. To assess the
' ama €977
values were computed from the values of the individual coefficients of degree 15,
17, 19 and 21 (Table 5), and these values were used with THROE to calculate the
effect of the (yv,q) = (1,£2) terms on e . The effect was found to be very small,
the maximum change in e during the run being 0.000012. So the (y,q) = (1,%2)
terms were ignored, and we adopted the SIMRES aolﬂtéfn for (v,q) = (1,t1) given
in Table 4, In the final solution the sd of §l4’ was doubled, but the other
values fitted well,

effects of the relevant lumped coefficients, (E,§)fz- , their
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Table 4

Values of lumped coefficients obtained from 1965-81A by fitting i alone,
e alone, or i and e together

From i alone From e alone | From e and i
THROE THROE SIMRES
% 1,0
10 c14 =55 * 7 -152 + 18 -60 + 7
-1,0
Sl‘ -32 9 ~92 + 26 =35 % 11
--l-ﬂl
Cl4 =43 £ 7 ~63 + 18 -52 + 8
-)’z
14 L i i 294 * 12 12 £ 17

4.1.4 Ariel 2, 1964-15A

Ariel 2, the second Anglo-US satellite, was launched on 27 March 1964 into
an orbit with inclination 51,64° with period 10].3 minutes. Initially, the
heights of perigee and apogee were 290 and 1360 km respectively, and the eccen-
tricity was 0.075. Using Minitrack observations, Gooding20 computed the orbit
at 210 epochs during the first year after launch, and has now12 determined values
of lumped l14th-order harmonics by analysing the variations in inclination and
eccentricity; the orbit was already post-resonant at launch. Because of the
relatively high eccentricity and the multitude of values, the best fitting is
obtained with eight pairs of values of (y,q) - the basic trio and five other
pairs. The values of inclination and eccentricity, and the curves fitted by
SIMRES, are shown in Figs 7 and 8., Although the fittings do not look so convin-
cing as those in Figs | to 6, there are far more values available for Ariel 2, and
the variations in the orbital parameters extend much further away from resonance,
because of the high eccentricity, as also happens for examplez’ with Vanguard 3.

For Ariel 2, the Q, coefficients do not fall off so rapidly as for the
three previous satellites (see Tables | to 3), and the neglect of harmonics of
degree grester than 23 may be a source of error. The effect of these higher

S10

harmonics was calculated using the values in Tables 5 and 7, and the only sd

needing to be increased for this reason was that of EIJ i
from 23 to 30 x 10-9 . The numerical values of the lumped harmonics as used in

which was increased

the solutions are given in Tables I to 3.
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4.2 The orbits analysed by Wagner

In a thorough assessment of the accuracy of the Goddard Earth Models,
Hagnets has analysed the l4th~order resonant variations in inclination (but not
eccentricity) of three satellites relevant to our work. The first of these three
orbits is that of 1963-26A, which passed through l4th-order resonance in March
1968, with inclination 49.7° and eccentricity 0.057. The second orbit is that
of 1961~-15G, a fragment from the exploded rocket of Transit 4A; this fragment
passed through l4th-order resonance in September 1971, with inclination 66.8° and
eccentricity 0.017. The third satellite is 1971-120A, Meteor 10, which Wagner
analysed for the years 1972-1975, some years before it was due to reach resonance.
As already mentioned, Wagner's values are close to those we have obtained from
1971-120B after resonance, and the two satellites, which are in nearly identical

orbits, should together define a reliable mean value.

Wagner's values for the q= 0 coefficients from these three satellites

are given in Table 1, the standard deviation for C|; for 1971-120A being

doubled, as mentioned in section 4.1.2.

A fourth orbit analysed by Wagner, or rather a set of orbits of several
fragments from the 1965-82 launch at inclination 32°, has been used to strengthen
our 8-coefficient solution for odd-degree coefficients. For 1965-82 the values
of the Qz are largest for £ = 23 to 29, and the geopotential coefficients of
these degrees will make a dominant contribution to the lumped coefficient. So
1965-82 is unsuitable unless at least eight coefficients are being evaluated.
Numerical data appear at the end of Table 1.

For 1963-26A and 1961-15G, Wagner also obtains values for the q =+ 1
coefficients. These are given in Tables 2 and 3, but the standard deviations
obtained by Wagner5 have been doubled, because his values are derived from the
variation in inclination only, and are not combined inclination-eccentricity

fittings, as our q = t1 values are.

4.3 The four high-drag orbits

l(loko&nikl6 has analysed the l4th-order resonant variations in inclination
(but not eccentricity) for two satellites with perigee heights near 200 km,
namely Intercosmos 9, 1973-22A, inclination b8.6°, and Intercosmos 10, 1973-82A,
inclination 74°, Because of the high drag, the values of the lumped harmonics
are rather inaccurate, and in the solution it was necessary to increase the sd
of 1973-22A by a factor of 2 and the sd of 1973-82A by a factor of 5.




- PPE——

Billerl7 has recently analysed the l14th-order resonant variation of inclina-
tion and eccentricity for China 2 rocket, 1971-18B, at inclination 69.90, but
again the orbit did not remain near resonance for long enough to allow an accurate

analysis, and it was necessary to increase the sd of El; by a factor of 2,

Despite their limitations, the results from these three orbits helped to
£fill gaps in the coverage of inclination, in the odd-degree solutions. The

values of the lumped coefficients from the three orbits are given in Table 1.

The fourth high-drag orbit used is that of Cosmos 462, 1971-106A, with
perigee height 240 km, which has been analysed by Walkerls. This orbit has some
similarities with 1965-8l1A. The q = O terms are found to have little effect, and
the analysis yields values of the q = %1 coefficients, which are given in Tables 2
and 3. In the analysis of 1971-106A, the perturbations in i and e due to
q = 2 terms were calculated, using lumped coefficients evaluated from the solu-
tions of Table 5, and the values of i and e were then cleared of these per-
turbations. This is a refinement which should always be used in resonance analyses

if reliable lumped harmonics can be pre-calculated.

4.4 Data not used

Many satellites move in orbits which are close to l4th-order resonance but
do not experience exact resonance. These orbits in 'shallow resonance' (as it
is often called) have been extensively studied over the years and utilized in
the comprehensive geoid models. Also Reigber and Balmino22 have obtained solu-
tions for the individual coefficients of 14th order up to degree 30, from analysis
of a number of shallow resonant orbits. Their results have been incorporated in
the GRIM 2 model; so we thought it best not to mix their values with ours, but to

obtain an independent solution for comparison.

5 THE SOLUTIONS

5.1 Solutions for odd-degree coefficients (£ = 15, 17, 19 ...)

The fittings of the (y,q) = (1,0) terms give us nine values of the
lumped coefficients with [q,k] = [0,1], listed in Table 1. Inserting these
values in equations (5), ve obtain nine equations for l4th-order C-coefficients
of odd degree,
G & QO.!E & QO.IE " A Eool (12)
15,14 17 "17,14 19 719,14  *°°° 14
5 =0,1
with nine similar equations for the coefficients Sla . The numerical values
of the Qz terms and lumped coefficients for each satellite are given in the

first nine rows of Table 1.

T ¢
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We follow the method which proved successful in solving for 15th-order
coefficients. To the nine equations of the form (12) we add constraint equations
of the form

€14 = 02 1072 /22 (13)
and then solve by least squares for 3, 4, 5 ....r coefficients from 12, 13, 14 ....
14 ....(9 + r) equations. The value of r is chosen empirically after examina-
tion of the solutions, to give what is believed to be the best set of values for
the individual coefficients. The quantity 10.5/!.2 derivesIl from "Kaula's rule
of thumb" for the order of magnitude of a coefficient of degree £ . Now that
individual coefficients are being evaluated with better accuracy, it is becoming
apparent that, at least for 12 < 2 < 30 , a better average value for the
coefficients would be about 0.7 x 10‘5/12 , with 10-5/22 itself regarded rather
as an upper limit. We found that the standard deviations of our solutions were
slightly improved by making this 30% reduction in the right-hand side of

equation (13); but the values of the coefficients were little altered, so it

seemed better to allow the more relaxed constraint, as given in (13).

In the course of the solutions of equations (12) and (13), some values of
lumped harmonics were found to be persistently ill-fitting. We tried doubling
their assumed standard deviations, and if the solution was significantly improved,
the doubled sd was used*. The changes made have already been mentioned; the

values given in Table 1 incorporate the increased sd and are those used in the
solutions.

When the nine equations itemized in Table 1, together with the constraint
equations (13), were solved by least squares for 3, 4, 5 ....9 coefficients, the
values of ¢ , the measure of fit, were 2,13, 1,08, 1.07, 1.07, 1.06, 1.06, 1.06
for the C-coefficients, and 1,23, 0.59, 0.59, 0.58, 0.58, 0.58, 0.58, for the
S-coefficients. (As before, ez is defined as the sum of the squares of the
weighted residuals divided by the number of degrees of freedom, which here is
always 9.) Since € fails to decrease when the number of coefficients evaluated
goes beyond 4, the 4-coefficient solutions, for £ = 15, 17, 19 and 21, are recom
mended as best, and are underlined in Table 5.

* Purists sometimes query the legitimacy of this procedure. Our aim is to derive
the best possible values of the geopotential coefficients: this aim is not
helped by giving too high a weight to inaccurate data. The inaccurate values
could be omitted altogether; but this would imply a judgment that zero weighting
is optimal, which is unlikely to be true unless the data are entirely spurious.
Our procedure is an attempt to optimize the weighting empirically.,




The 8-coefficient solutions are also given in Table 5, however, for two
reasons: (a) to show how the values of the first four coefficients are affected
by inclusion of higher harmonics; and (b) to provide a comparison with GEM 10 ard
GRIM 2, which go to degree 29. When solving for eight coefficients, we include
; a further equation, that from the 1965-82 satellites at 32° inclination, given
i, in the last row of Table 1.

Table 5

Solutions for geopotential harmonics of order 14 and odd degree

lo’?:._“ w’im A
. 4=coeft 8-coeff 10 | ermM 2 |SSE IV |  4-coeft 8-coeff | GmM 10 | GRmM 2 | ssE 1V
15 | s e sazas 3.9 22| 4.8 [-23,820,3(-24.221.8] -26.6 | -24.3| -33.8
17 [=15,022,6]|-17.426.0 | -15.9 | -26.3 | -13.7 | 16.82 1.2 | 17.722.7] 1009 9.2 13.2
19 | 216 32.8] 0942 5.8 | -7.6| «3.2 | =262 10| 7.9 1.9 | -12.6 | =121 | 4.4
20 | 182226 1592124 197 0 9.5 [=10,6 21,9 [-11.5¢5.7 | 10.3] -7.1{ 14.0
] 23 . 8210 8 9 17 0+5 -5 20 | -21
25 -16 £ 12 -23 1”7 -22 126 17 -2 21
27 14213 23 | -22 17 2¢7 6 15 -5
29 ~2112 -n 1 216 10 15

Table 6

Weighted residuals for each satellite in the
4-coefficient solution of Table 5

Residuals for

=U, =U,
4 0y

1973-22A | -1.33 | -0.58
1963-26A | -0.04 0.35
1964-15A 1.34 | -0.76
1961-15G | -0.09 | -0.00
1971-18B 1.55 0.72
1965-16G 0.02 | -0.01
1973-82A | -1.35 | -0.68
1971-120A] 0.90 | -0.37
1971-120B| -1.05 0.36

Satellite
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The weighted residual, that is
(observational value minus computed value) + (standard deviation),

for each satellite in the 4-coefficient solution is given in Table 6. The resi-
duals for the 8-coefficient solution are very similar., It is obvious from

Table 6 that the formal standard deviations of the solutions for the C-coefficients
could be reduced by omitting the three high-drag satellites. When the equations
are solved with these three satellites omitted, it is found that the values of the
C-coefficients remain within } sd of those in Table 5, but the standard deviations
are reduced by 20%Z on average. Although this solution is formally more accurate,
it is probably less reliable because of the wider gaps in the coverage of inclina-

tion, so we prefer the solution given in Table 5.

Equation (6) shows that a truer measure of the strength of the resonance
effects is given not by the lumped coefficients alone but by these coefficients

multiplied by F » and values of the lumped coefficients multiplied in

15,14,7
this way are given in the last two columns of Table 1 (which also shows that the

most accurate results are those from 1961-15G, 1965-16G and 1971-120).

The values of the lumped coefficients multiplied by §15’|4’7 are also
plotted in Fig 9, with curves showing the values given by the 4-coefficient
solutions. It is seen that the solutions are entirely satisfactory, in the
sense that there are no strong oscillations in the gaps between the data points.
The points indicated by the triangles in Fig 9 are at an inclination of 86.20,

where 0 : a satellite in a circular orbit at this inclination would

F -
15,14,7
suffer no perturbation in inclination as it passes l4th—order resonance (except

possibly from 28th-order coefficients).

5.2 Solutions for even-degree coefficients (£ = 14, 16, 18 .,..)

For the orbits of the four basic satellites and 1971-106A, the (y,q) = (1,x1)
terms in the fittings of the variations in eccentricity and inclination have given

two equations each for the l4th-order coefficients of even degree, of the form

2 1,0z 1,07 L Eh
C14,06 * U6 6,14 * U8 G181 * o0 = Oy (14)
- -'192

o) 2= ] y2=
Cik, 4 T N6 Ve, 0k 8 Cis ik T Vi N Sy (15)
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' and similarly for £ , on replacing C by S throughout. The numerical values
? of the Qz and the lumped harmonics on the right-hand side, for each of these
satellites and for the two satellites of Wagner, are given in Table 2, for
equation (14), and Table 3, for equation (15). To these 14 equations for

c!,lA (and 14 for sz,lk

r coefficients from (14 + r) equations, with r = 3, 4, ....9 .

) we add the constraint equations (13), and solve for

With 14 equations to be fitted simultaneously, there is little scope for
the values of the coefficients to adjust themselves to fit non-conforming lumped

values. So it was no surprise tc find a number of obstinately ill-fitting

lumped coefficients, for which fsqus advantageous to increase the sd . They
were as follows. The sd of Cla was doubled-ffya 1961-15G and 1971-120B,
and multiplied by 10 for lgLI?JOGA. The sd of 814 was multiplied by 5 for ;
1971-106A. The sd of § ''" was doubled for 1963-26A and 1965-81A. The
values given in Tables 2 and 3 are those used in the solutions, after these

y ' increases in sd have been made.

The 14 equations of type (14) or (15), itemized in Tables 2 and 3, plus
the constraint equations (13), were solved by least squares for 3, 4 ....9
coefficients. The values of ¢ , the measure of fit, were 1,03, 1,01, 0.91, 0.89,
0.89, 0.89, 0.89 for the C-coefficients and 0.92, 0.74, 0.69, 0.68, 0.68, 0.68,
0.68 for the S-coefficients. For both C and S , therefore, ¢ decreases
significantly - by 107 and 7% respectively - on going from the 4- to the
5-coefficient solution, but does not decrease significantly thereafter. So the
S5-coefficient solutions, for £ = 14, 16, 18, 20 and 22, are recommended as the
best, and are given underlined in Table 7. The 9-coefficient solution is also
given in Table 7, however, to show how little the solution is affected by

including higher-degree coefficients, and to provide a comparison with GRIM 2,

Equations (6) and (il) show that a befﬁfr measure of thgqeg;ect of the
- - ’ - - 1

lumped coefficients is given by F and F (¥ than by the
14,14,6°14

c
14,14,7 14
lumped coefficients alone. The values of these quantities (S as well as C) are
listed in the last two columns of Tables 2 and 3, and the values are plotted in
Figs 10 and 11, with the curves given by the 5-coefficient solution. From Fig 11
alone it may seem at first sight that the curves are making rather a §00t job of
fitting the points; but the fit is of course simultaneous for the C (or §)

values in both Fig 10 and Fig 11, so that the form of the curve is a compromise

% between their conflicting claims. |
015
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Table 7

Solutions for geopotential harmonics of order 14 and even degree

lO’El.“ lo’il'u

¢ S-coeff 9-coeff | GEM 10 | GRIM 2 | sSE Iv | S-coeff 9-coeff 10 | came 2 |sse v
16| =38,5 22,9 |-38.92+3.1| -51.2| -69.3 | -56.3 | -2.822.2| 81224 -s.4| -1.2] -3.2
16| =22.3 + 3.6 | -22.6 + 4.2| -18.8 | -29.8 | -20.1 | -36,0 + 3.8 | -35.3 + 4.0 | -37.9 | -40.6 | -33.3
18| =260 4,9 [-21.6 258 -8.0| -10.1 | 0.6 | =3.223.7| -46242| -1001] -23.8]-22.2
20| g8:s58| 74:67] 130 8.0 | 17.3 | =154 2 4,6 | -13.82£5.3| -10.6 | -44.5 | -26.6
22| -14,5 2 8,1 |-11.2 ¢ 9.9 9.7 | -23.7 | 0.8 | 993264 | 7.2:8.0 62| -1.2]| 6.6
2 -8 212 -18 18 | -4 st9 4 s -28

26 0+ 1 7 25 338 1 -9

28 1311 -7 -19 -2:x8 =11 -9

30 0:10 " 07 7

Table 8

Weighted residuals for each satellite in the
5-coefficient solution of Table 7

Residuals for
-1,0 -1,0 -1,2 ~1,2

Satellite CIA SM clé slb % {

1963-26A 0.49 =0.29 0.64 -0.95
1964-15A =0.72 0.54 | -0.26 =0.15
1971-106A 0.04 =1.17 1 =1.14 0.71
1961-15G =0.07 0.18 | =-1.43 -0.07
1965-16G 0.68 0.30 | -0.76 =0.51
1971-1208B 0.45 0.01 | =1.75 -0.08
1965-81A 0.13 =0.31 0.77 1.20

6 COMPARISONS

6.1 Odd-degree coefficients

Comparison between the 4-coefficient and the 8-coefficient solutions in

015 Table 5 shows that the solutions are extremely stable. The values in the

R C T R Ty o ——

8~coefficient solution differ from the corresponding values in the 4-coefficient |

solution by less than the standard deviation of the latter (except for §|5 14 ° i
’

where the sd is unusually small). This stability is a very welcome feature of }

o

1

the solutions,
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Comparison of the 4- and 8-coefficient solutions with GEM 10 shows good
agreement among the C coefficients (within 1.5 sd); but our S coefficients,
which have very low standard deviations, do not agree so well with GEM 10 (except

for £ = 15, where the difference is only 3Z).

Comparison with GRIM 2 shows poor agreement with C coefficients and better

agreement than GEM 10 for the S coefficients.

Comparison with SSE IV.3 shows quite good agreement with our solutions for
the C coefficients, but considerable divergences for the S coefficients.

Our value and those from the three comprehensive geoid solutions are
largely independent, but not entirely so, since Wagner's results have some

influence on GEM 10, as well as on our values.

The GEM 8 model agrees with our values just about as well as GEM 10. How-
ever, no detailed comparisons are made, because we feel that the strongly
oscillatory high-degree terms in GEM 8 for the C coefficients (the values are
-27, +26 and -41 x IO-9 for & = 25, 27 and 29) are more likely to be an artefact
of the solution than realistic values. This oscillatory tendency may also affect

GEM 10 and SSE IV.3, though to a lesser extent.

Although the three comprehensive models do not always agree either with
each other or with our values, they agree much better with our values than
happened with the 15th-order coefficients, no doubt because several shallow
resonant l4th-order orbits are included in the comprehensive solutinons. The
agreement is best for & = 15, 17 and 19, with all four solutions indicating:

a low positive value (around 5%) for C15 14 and a value close to =24 for
1

15,14 %

a valte near -15 for 017’14 s and near +15 for S”,M H

for Cl9 14 ° the verdict is "small and probably negative', and for
»

[ 'negative and larger' (near -10).
19,14

Por higher values of £ the agreement is not so good, and the near-unanimity

over 625,16 and C may be a chance effect,

27,14
The comparison may perhaps fairly be summarized by saying that our solutions

and those from the comprehensive models are recognizably similar, but further work

on both methods is needed to achieve better agreement,

Sio
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6.2 Even-degree coefficients

Comparison of our 5-coefficient and 9~coefficient solutions in Table 7
shows that, as for the odd-degree solutions, the values are extremely stable.
The values in the 9-coefficient solution differ from the corresponding values
in the 5-coefficient solution by less than half the standard deviation of the
latter. The chief imperfection is the rather large standard deviations, which
are two or three times greater than for the odd-degree coefficients. This
reflects the fact that the most easily measured orbital change at resonance, that

in the inclination, usually depends primarily on the odd-degree coefficients.

Comparison of our 9-coefficient solutions with the comprehensive models
shows considerable differences in the C terms for £ = 14 and 18, For & = 14
the values* from GEM 10, GRIM 2 and SSE IV.3 are between -50 and -70, whereas
our solution gives -39 * 3, For L= 16, the three comprehensive models differ,
but their average is -23, in agreement with our values. For & = 18 our value
is =22+ 6, while the three comprehensive models give values between -10 and +1.
For the S coefficients the agreement is much better, and GEM 10 agrees with our
values to within 1.4 sd for all values of % (up to 28)., For £ = 14 our
S5-coefficient S solutions give -8+ 2, while the other three range between -5
and -1. For 2 =16 we have -36 + 4, while the other three range between ~41 and
-33, For £=18 the agreement is not so good. For £ =20 the GRIM 2 value of
-44.,5 seems unlikely, but the other two are fairly close to ours. For £ = 22 all

three are within 2 sd of ours.

For even-degree coefficients, our values and those from the comprehensive
models are almost completely independent, since Wagner's limited results for

(v,q) = (1, 1) have very little influence on our solutions.

The conclusions from Table 7 are (a) that the agreement is already good
for §l 14 ° but there are discrepancies for Ez 14 ° and (b) that the standard
» H]
deviations of our solutions need to be improved by analysis of further low-drag
orbits.

7 CONCLUSIONS

We nave for the first time determined the values of the coefficients of
individual l4th-order harmonics in the geopotential from analysis of changes in
the inclination and eccentricity of satellites with orbits which passed through
l4th~order resonance. Results from the eleven orbits are used. Although values
up to degree 30 are obtained, the recommended set of values runs from degree 14
to 22 only, and is as follows:

* In this paragraph we drop the factor 1079,




9= 9=

i b cllla 0 “2,14

14 -38.5 * 2.9 -7.8 + 2,2
15 4,5+ 1,1 -23.8 + 0.3
16 -22.3 +3.6 =-36.0% 3.8
17 -15.0 £ 2.6 16.8 + 1,2
18 -=24.0 * 4.9 -3.2 £ 3,7
19 ~1.6 £ 2.8 -7.6 + 1,0
20 8.8 +5.8 -15.4 % 4.6
21 18.2 + 3.6 -10.6 + 1.9
22 -14.5 t 8.1 9.9 * 6.4

Tables 5 and 7 show that these values are not appreciably disturbed when higher-
degree coefficients are included in the evaluations. The odd-degree coefficients,
derived primarily from changes in orbital inclination, are more accurate than the
even-degree coefficients, which are determined primarily from changes in

eccentricity.

Values obtained in this way from resonance effects provide an independent
test of the accuracy of the comprehensive geoid models derived in recent years.
Detailed comparisons with three of these models, GEM 10, GRIM 2 and SSE 1IV.3, show
that their values of l4th-order harmonic coefficients are generally similar to
ours: see Tables 5 and 7. The best agreement - within 1} sd for the even-degree
S coefficients and the odd-degree C coefficients - is with GEM 10. However,
there are also significant discrepancies, and further work on both methods is

needed to achieve better agreement.
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